COMP 520 - Compilers

Programming Assignment 1 — Syntactic Analysis

Programming Assignment 1

* PA1 has two parts, Lexical Analysis and Syntax Checking.
e Start early, and visit office hours if you have any questions.
» Autograder will be up later today (1/16)

e Due: 1/31/24 at 11:59pm

THE UNIVERSITY

Goals

* miniJava is a subset of the Java programming language.
* A miniJava program is a valid Java program.

* Semester Goal: Create a compiler that can take in a miniJava
source code file and output a binary file that can be
executed.

Java Runtime

e Executable binaries for Java run on the JVM

Source Code
»

3

Compiled file
main.class

4

Java Virtual Machine

Operating System

=

Java Runtime

* This allows Java programs to run “cross-platform”

Source Code :
»

* The JVM interprets the
compiled code and runs main.class
{

it on the underlying OS.

Java Virtual Machine

Operating System

miniJava

* The miniJava compiler will NOT output JVM bytecode.

* Instead, the compiler will output bytecode that will run natively on a
modern x86_64 Linux operating system.

THE UNIVERSITY

miniJava

* The miniJava compiler will NOT output JVM bytecode.

* Instead, the compiler will output bytecode that will run natively on a
modern x86_64 Linux operating system.

* We lose cross-platform capabilities
* We gain learning how compilers target physical processors/OSes

What are the goals of PA1?

What are the goals of PA1?

Lexical Analysis Syntactic Analysis

What are the goals of PA1?

Lexical Analysis Syntactic Analysis
* Create the language’s lexicon

 The lexical unit is the Token

What are the goals of PA1?

Lexical Analysis Syntactic Analysis
* Create the language’s lexicon

 The lexical unit is the Token

* Take in a few letters at a time,
and return a Token

THE UNIVERSITY

What are the goals of PA1?

Lexical Analysis Syntactic Analysis
* Create the language’s lexicon

 The lexical unit is the Token

* Take in a few letters at a time,
and return a Token

* Responsible for removing
whitespace and comments

e Qutput is a stream of tokens

THE UNIVERSITY

What are the goals of PA1?

Lexical Analysis Syntactic Analysis
* Create the language’s lexicon * Input is a stream of tokens
* The lexical unit is the Token * Only care about syntax

* Take in a few letters at a time,
and return a Token

* Responsible for removing
whitespace and comments

e Qutput is a stream of tokens

=

What are the goals of PA1?

Lexical Analysis Syntactic Analysis
* Create the language’s lexicon * Input is a stream of tokens
* The lexical unit is the Token * Only care about syntax

* This analyzer doesn’t see
whitespace, nor comments

* Take in a few letters at a time, * Only concerned about code syntax

and return a Token

* Responsible for removing
whitespace and comments

e Qutput is a stream of tokens

=

What are the goals of PA1?

Lexical Analysis Syntactic Analysis
* Create the language’s lexicon * Input is a stream of tokens
* The lexical unit is the Token * Only care about syntax

* This analyzer doesn’t see
whitespace, nor comments

* Take in a few letters at a time, * Only concerned about code syntax

and return a Token

* Responsible for removing

whitespace and comments * Output is an AST (PA2)

e Qutput is a stream of tokens

Whitespace!

* Consider the following C code:

X77X X777 X X————— X

X—— — X X—— — =X X7 — —™X

* Predecrement, Postdecrement, Subtraction, Negation
* ——X X—— X~y —X

Scanning C++

* Consider the following C++ code:

Foo<Bar> cin >> var |Foo<Bar<Bazz>>

* Operator >>

e Question: How would you correctly scan >> in the example above?

Let’s start with Lexical Analysis

PA1- TokenType.java

* This is the equivalent of Java’s TokenKind class (more on this soon)

PA1- TokenType.java

* This is the equivalent of Java’s TokenKind class (more on this soon)

* In the TokenType enumeration, we list the possible types of tokens we
want to stream to our syntactic analyzer.

* But what are the types of tokens that we have??

Taking a look at Java’s TokenKind

* https://www.javadoc.io/static/org.kohsuke.sorcerer/sorcerer-
javac/0.11/com/sun/tools/javac/parser/Tokens.TokenKind.html

https://www.javadoc.io/static/org.kohsuke.sorcerer/sorcerer-javac/0.11/com/sun/tools/javac/parser/Tokens.TokenKind.html
https://www.javadoc.io/static/org.kohsuke.sorcerer/sorcerer-javac/0.11/com/sun/tools/javac/parser/Tokens.TokenKind.html

Taking a look at Java’s TokenKind

* https://www.javadoc.io/static/org.kohsuke.sorcerer/sorcerer-
javac/0.11/com/sun/tools/javac/parser/Tokens.TokenKind.html

* Pretty much everything is in there!

* If you want, you can organize your TokenType similarly

https://www.javadoc.io/static/org.kohsuke.sorcerer/sorcerer-javac/0.11/com/sun/tools/javac/parser/Tokens.TokenKind.html
https://www.javadoc.io/static/org.kohsuke.sorcerer/sorcerer-javac/0.11/com/sun/tools/javac/parser/Tokens.TokenKind.html

Analytically determine TokenType

* In-class exercise to determine where LexicalAnalysis ends and
Syntactic Analysis starts

* Graphs!

How would one even define
“Syntax”?

Syntax

* Arrangement of words and phrases to create a well-formed sentence
in a language

* For example: Article Noun Verb Article Noun:
* The cat chases the mice

 What is another way to use the above syntax?

Syntax

* Arrangement of words and phrases to create a well-formed sentence
in a language

* For example: Article Noun Verb Article Noun:
* The cat chases the mice

* However, this does not always make well-formed sentences!
* The cat chases a mice

Languages Covered in 455

Some use in parsing.
- context-sensitive

automata

Useful for parsing.

grammar
- pushdown
automata

Useful for pattern

grammar \
- linear bounded N “algorithms”

- context-free T~

Recursively Enumerable Languages

“computable functions”

Recursive Languages

A

Turing
machines

A

_ “decision problems”

Context-Sensitive Languages

T~

Context-Free Languages

Regular Languages

v

matching.
- finite automata
- regular exps.
- regular grammar

Comp 750, Fall 2023 — James H Anderson

455&550 - 27

TMs that
always halt

What about Regular Languages?

e Can anyone give me the regular expression for a US telephone
number?

What about Regular Languages?

e Can anyone give me the regular expression for a US telephone
number?

* Something like: 1?\h?(\d){3}\h*-?\h*(\d){3}\h*-?\h*(\d){4}

* And that doesn’t even include using parenthesis in the area code, like
(234) 567 - 8901

What about Regular Languages?

* Can anyone give me the regular expression for an email address?

What about Regular Languages?

* Can anyone give me the regular expression for an email address?

* Did you guess something like:
* [\w-\._[+@[\w-]+\.[\w-]+

THE UNIVERSITY

I[” of NORTH CAROLINA
t‘_" af CHAPEL HILL

RFC-822 Compliant Email Regex

/R:(2AAN)) *(2:(2:(2:[()<>@,;:\\" .\ \NO00-\O31]+(?:(?:(?:\r\n) ?[\t])+ | \Z | (?=[\["(}<>@,;:\\" \\ID) | " (2 [\ NPT NN [(2:(2:\r\n) 20 \E1)) ' (2:(2:\r\n) 20 \e])*) (2:\(2:(2:\r\n) 2 \t])*(2:[()<>@,;:\\"\[\] \000-
\O31J+(2:(2:(2:\r\n)?[\t])+ \Z| (?=[\["()<>@,;:\\" \NID)) | "(2: [N\ \PANT T\ | (2:(2:\\n) 20 \E]))*" (2:(2:\r\n) 2L \t])*))* @ (?:(2:\r\n) 2[\t]) *(?:[*()<>@,;:\\"\[\] \000-\O3L]+(?:(?:(?:\r\n)?[

MD+INZI(=I\"0<>@,;:\\" \INID) INCENNNANT NN (2:\r\n) 20\e])*) (2:\(2:(2:\r\n) 2L \E]) * (2:[()<>@,;:\\ " \[\] \O00-\O3 1]+(?:(?:(?:\r\n) 2[\t])+ \Z| (P=[\["()<>@,;:\\" \INI])) [\[(I*NNNAANT 1) NI (2:(2:\r\n) 2

MD*N* | (2:[20<>@,;:\\". A\ \000-\031]+(2:(2:(?:\r\n) 2[\t])+ [\Z| (?=[\["()<>@,;:\\"\\ID) [" (2: L\ \PANT AN | (2:(2:\r\n) 2L \t1))* (2:(2:\r\n) 20 \t])*)*\<(2:(2:\r\n) [\t])*(2:@(?:[*()<>@,;:\\"\[\] \000-\031]+(?:(?:(?:\r\n)?[

D+ INZ](=0\"0<>@,;:\\" XNID) INCENNNANT NN (2:\rAn) 20\e]) *) (2:\(2:(2:\r\n) 2L\E]) * (2:[()<>@,5:\\ " \[\] \O00-\O31]+(?:(?:(?:\r\n) ?[\t])+ |\Z| (P=[\[" () <>@,;:\\" \I\IT)) \[([*\NNAANT TN)M \T(2:(2:\r\n) 2

\D)*N*(2:, @(2:(2:\r\n)2[\t]) *(?:[*()<>@,;:\\"\[\] \000-\O3L]+(?:(?:(2:\r\n) ?[\t])+ [\Z] (2=[\[" (}<>@,;:\\"\INID) INHCLNDNNANT AN NI (2: (2ArAn) 2D\E])*) (2. (2:(2:\r\An) [\E])* (2:[A()<>@,;:\\".\[\] \O00-\O31]+(?:(?:(?:\r\n)
\D+NZTC=0\"0<>@,;:\\" \NID)INCENNAN NN NI (2:\rAn) 20\8])*))*)*:(2:(2:\r\n) [\t])*) 2 (2:[*()<>@,;:\\" \[\] \000-\031]+(?:(?:(2:\r\n) [\t])+ [\Z | (?=[\["()<>@,;:\\" \(\ID) | " (2: [P\ " \PANT I | (2:(2:\r\n) [\t]))** (2:(2:\r\n) ?[
\DF)EAR:(2:\\n) [\) * (2:[A()<>@,;:\\"\[\] \000-\031]+(?:(?:(2:\r\n) 2[\t])+ | \Z| (?=[\["()<>@,;:\\"\NID) | " (2: L2\ "\PANT AN | (:(2:\r\n) [\t])) ¥ (2:(2:\r\n) [\£1) %)) * @ (?:(?:\r\n) ?[\t]) *(2:[()<>@,;:\\".\[\] \000-
\O3L+(2:(2:(2:\r\n) 2[\t])+ \Z| (P=[\[" ()<>@,;:\\" \INID)) [\L(PMNONNANT L) SN2 (2:Ar\n) 20 D) *)(2:\.(2:(2:\r\n) [\e])* (2:[* () <>@,;:\\"\[\] \000-\031]+(?:(?:(?:\r\n) ?[

\D+INZ](=I\"0<>@,;:\\"XNID) NCEANNAN N\ (2:\An) 20\E])*)*\>(2:(2:\r\n) 2L \t)) | (2:[7()<>@,;:\\". N[\ \O00-\O3L]+(?:(?:(?:\r\n) ?[\t])+ [\Z| (P=[\[" ()<>@,;:\\" \INII)) [" (2:L\" NN AN | (2:(2:\r\n) 20 \t])*(2:(2:\r\n) ?[
NE*)*:(2:(2:AAN) 2L D (2:(2:(2:[M()<>@,;:\\" NN \O00-\O3L]+(?:(2:(2:\r\n) ?[\t])+\Z| (?=[\["()<>@,;:\\" NN | " (LN \ANT AN | (2:(2:\AAR) LMD" (2:(2:Ar\n) 2L \E])*)(2:\. (2:(:\rAn) [\ E]) * (?:[A ()<>@,;:\\".\[\] \00O-
\O31J+(2:(2:(2:\r\n)?[\t])+ \Z| (?=[\["()<>@,;:\\" X)) | "(2: [N \PANT T\ | (2:(2:\e\n) 2 \E]))*" (2:(2:\r\n) 2[\t]) *))* @ (?:(2:\r\n) 2[\t]) *(?:[*()<>@,;:\\"\[\] \000-\O3L]+(?:(?:(?:\r\n)?[

\D+INZIC=I\"0<>@,;:\\" \NID) INCCANNANT NN (2:\r\n) 20\e])*) (2:\(2:(2:\r\n) 2L \])* (2:[()<>@,,5:\\ " \[\] \O00-\O31]+(?:(?:(?:\r\n) ?[\t])+ \Z| (P=[\["()<>@,;:\\" \INI)) [\[(PMNNNANT T\ S\T(2:(2:\r\n) 2

MD*N* | (2:[20<>@,;:\\". A\ \000-\031]+(2:(2:(?:\r\n) [\t])+ [\Z| (?=[\["()<>@,;:\\"\\ID) | " (2: [\ \PANT AN | (2:(2:\r\n) 2L \t1))* (2:(2:\r\n) 20 \t])*)*\<(2:(2:\r\n) [\t])* (2: @ (?:[*()<>@,;:\\"\[\] \000-\031]+(?:(?:(?:\r\n)?[
\D+INZ](=0\"(<>@,;:\\" XNID) INCENNNANT NN (2:\rAn) 20 \e]) *) (2:\ (2:(2:\r\n) 2L\E]) * (2:[A()<>@,,5:\\ " \[\] \O00-\O31]+(?:(?:(?:\r\n) ?[\t])+ |\Z| (P=[\[" ()<>@,;:\\" \I\I])) \[([P\NNAANT 1) S\T(2:(2:\r\n) 2

\D*N*(2:, @(2:(2:\r\n)2[\t]) *(?:[*()<>@,;:\\"\[\] \000-\O3L]+(?:(?:(2:\r\n) ?[\t])+ [\Z] (2=[\[" (}<>@,;:\\" \INID) INLCEMNDNNANT AN NI (2: (2ArAn) 2D\ED)*) (2. (2:(2:\rAn) [\E])* (2:[A()<>@,;:\\".\[\] \O00-\O31]+(?:(?:(?:\r\n)
\D+NZIC=I\"0<>@,;:\\" \NID)INCENNNAN NN (2:\An) 20\E])*))*)*:(2:(2:\r\n) [\t])*) 2 (2:[*()<>@,;:\\" \[\] \000-\031]+(?:(?:(2:\r\n) [\t])+ [\Z | (?=[\["()<>@,;:\\"\(\ID) | " (2: 2\ "\PANT I | (2:(2:\r\n) [\t]))** (2:(2:\r\n) ?[
\DF)EAR:(2:\\n) [\) * (2:[*()<>@,;:\\"\[\] \000-\031]+(?:(?:(2:\r\n) 2[\t])+ | \Z| (?=[\["()<>@,;:\\"\\ID) | " (: L2\ "\PANT I | (2:(2:\r\n) [\t])) ¥ (2:(2:\r\n) [\£]) %)) * @ (?:(?:\r\n) ?[\t]) *(2:[*()<>@,;:\\".\[\] \000-
\O3T+(2:(2:(2:\r\n) 2[\t])+ \Z| (P=[\[" () <>@,;:\\" \INID)) [\L(PPNONNANT L) SN2 (2:ArAn) 2L \ED)) (2:\. (2:(2:\r\n) [\e]) *(2:[* () <>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n) ?[

\D+INZI(=I\["(<>@,;:\\" \NID) INCANAAN AN\ (2:\An) 20\E]) *)*\>(2:(2:\r\n) 2L \t])*) (22 \s* (2:(2:[A()<>@,;:\\".\[\] \O00-\O3L]+(?:(2:(2:\r\n) 2[\t])+ [\Z| (P=[\["()<>@,;:\\" \\I])) | " (2:[M\"\AANT AN | (2:(2:\r\n) 2]

D) (2:(2:\r\n) 2L \ED)*) (2:\(2:(2:\AAn) [\e]) * (2:[()<>@,;:\\"\[\] \OOO-\O3L]+(?:(?:(?:\r\n) ?[\t])+ [\Z| (?=[\[" ()<>@,;:\\" \INII) | " (2: [\ "™\ N\ | (2:(2:\r\n) 20 \e 1) * (2:(2:\r\n) [\t]) %)) * @ (2:(2:\r\n) 2 [\t]) * (2:[* () <>@,;:\\" \[\]
\000-\031]+(?:(?:(?:\r\n) 2[\t])+ |\Z| (?=[\["()<>@,;:\\" \NI)) I\LPNNAAN TN S\ ?:(2:\r\n) 2L T *) (2:\ (2:(2:\r\n) 2L \t1) * (2:[*()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[

\D+I\ZI(?=I\["0<>@,;:\\" \NID) NN AN NI?:(2:\r\n) 20 \e]) *))* | (2:[*()<>@,;:\\".\[\] \000-\031]+(?:(?:(2:\r\n) ?[\t])+[\Z| (?=[\["()<>@,;:\\"\[\ID) " (2:[2\"\PANT [\ [(2:(2:\r\n) ?[\t]))*" (2:(2:\r\n) ?[
MDFPAERAAN) LMD *(2:@(2:[()<>@,;:\\"\[\] \000-\O3L]+(?:(?:(?:\r\n) ?[\t])+ | \Z| (?=[\[" ()<>@,;:\\" \INIT) \L(CNNNANT AN SN2 (2:\r\n) 2L M) *)(2:\.(2:(2:\r\n) [\t]) * (2:[* () <>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\D+INZIC=I\"0<>@,;:\\"\NID) INUENNNAN NN (2:\r\n) ?[\e])*))* (2:, @ (2:(2:\r\n) 2 [\t]) *(2:[*()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)2[\t])+ [\Z| (>=[\["()<>@,;:\\" \\ID) INHMNNNANT)] (2:(2:\r\n) ?[
MDF)EAR:(2:\\n)?[\E)* (2:[2()<>@,;:\\"\[\] \000-\031]+(?:(2:(2:\r\n) 2[\t])+]\Z| (?=[\["()<>@,;:\\".\\ID) INHCENNINANT)\ (2:\r\n) 20\e]) *))*)*:(2:(2:\r\n) [\t])*) 2 (2:[* () <>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\D+INZIC=I\"0<>@,;:\\" XN (2:LNNAN N | (2:(2:\r\n) [\ D) (2:(2:\r\n) 2L \e1) *) (2:\ (2:(2:\r\n) 2[\&]) *(2:[()<>@,,;:\\".\[\] \OOO-\O3L]+(?:(?:(?:\r\n) ?[\t])+ [\Z | (P=[\[" ()<>@,;:\\" \INI)) | " (2:[*\"\A\W] [\\. | (2:(?:\r\n) ?[
MDY (2:(2:\\n) 2 \t])*))* @ (2:(2:\r\n) 2[\t])* (2:[()<>@,;:\\ " \[\] \OOO-\O31]+(?:(?:(2:\r\n) [\t])+ | \Z| (>=[\["()<>@,;:\\" \I\I])) \[(LNDNAANT TN SN2 (2:AAn) 2L\ *) (2:\(2:(2:\r\n) [\E]) * (2:[2()<>@,;:\\".\[\] \00O-
\O3L+(2:(2:(2:\r\n) ?[\t])+ \Z| (P=[\[" () <>@,;:\\" \INID)) \LPNNNANT TN SN R:(2:AAAn) 20D) $\>(2:(2:\r\n) [\£]) %)) *) 2,\s*)/

Regular Expressions

* Okay, maybe regular languages might be a little too complex when
trying to specify the syntax for a programming language

* Are there other problems with regular languages?

THE UNIVERSITY

Consider the Grammar for Identifiers

* [dentifier ::= Letter | Identifier Letter | Identifier Digit | Identifier _
e Letter::=a|b|c..
e Digit::=0|1]2..

* This grammar is not regular (in its current form without modification,
it does not translate to a regular language) Why?

THE UNIVERSITY

Consider the Grammar for Identifiers

* [dentifier ::= Letter | Identifier Letter | Identifier Digit | Identifier _
e Letter::=a|b|c..
e Digit::=0|1]2..

* This grammar is not regular (in its current form without modification,
it does not translate to a regular language)

* Conveniently, we can just move around where the recursion occurs

Consider the Grammar for Identifiers

* [dentifier ::= Letter | Identifier Letter | Identifier Digit | Identifier _
e Letter::=a|b|c..
e Digit::=0|1]2..

 [dentifier::=(a| b |c.)(a|b|c..|O|1]|2..|_)*
* And now the recursion is on the right-hand-side

=

Syntax

* Formally describing the syntax of a programming language is best
done through a context-free grammar

* Additional lexical rules needed (comments, whitespace, etc.)

* Note identifiers cannot be reserved words, the lexical analyzer will
output such words as their reserved TokenType and the syntax will
throw an error when it got a reserved word instead of an identifier.

e Contextual constraints can also be made formal, but more on this in
PA2

THE UNIVERSITY

Context-Free Grammers

* CFGs are an excellent way to describe the syntax of a language.

* They are clear, easier to understand than regular expressions, and
give you a bit more flexibility. (No need to worry about left-regular or
right-regular CFGs)

=

Context-Free Grammers

* CFGs are an excellent way to describe the syntax of a language.
e Consider the following definition of a sentence:

Sentence ::=Subject Predicate Object
Subject ::= Article Noun

Predicate ::=Verb

Object ::= Article Noun

Article :=a | the

Noun ::=dog | cat | mice

Verb ::= chase | chases

=

CFG Components

Sentence ::=Subject Predicate Object

Subject ::= Article Noun

Predicate ::=Verb

Object ::= Article Noun

Article :=a | the

Noun ::=dog | cat | mice

Verb ::= chase | chases
Terminals {a, the, dog, cat, mice, chase, chases}

Non-terminals | {Sentence, Subject, Predicate, Object, Article, Noun, Verb}

Start symbol Sentence

THE UNIVERSITY

Language

* The language generated from our CFG is a set of sentences
* Each sentence can be generated by repeated application of the rules

* Note: Each valid sentence generated from the CFG can be viewed
entirely as an ordered tuple of terminals.

Recursion

 What if we want to allow “the dog and the cat” as the subject?
e Currently it is:

Sentence ::= Subject Predicate Object

Recursion

* What if we want to allow “the dog and the cat” as the subject?

Sentence ::= Subject (Conjunction Subject)* Predicate Object

Recursion

 What if we want to allow “the dog and the cat” as the subject?
Sentence ::= Subject (Conjunction Subject)* Predicate Object

* This will enable:
The dog and the cat and the dog and the mice and the cat chase a cat.

Recursion
The dog and the cat and the dog or the mice and th‘e ca} chase a cat.
Artlcle Noun Artlcle Noun Artlcle Noun Artlcle Noun Artlcle Noun A‘rtlcle Noun
Subject Conj. Subject Conj. Subject Conj. Subject Conj. Subject Verb Object

TN

Subject (Conj. Subject)* Predicate Object

Sentence

Limitations of CFGs

e Can generate incorrect sentences.
“The cat chase a mice”

* Thus, simple CFGs are suitable for describing syntax, but “chase”
contextually needs to be “chases” and “mice” cannot be preceded
with “a”.

THE UNIVERSITY

Limitations of CFGs

e Can generate incorrect sentences.
“The cat chase a mice”

* Thus, simple CFGs are suitable for describing syntax, but “chase”
contextually needs to be “chases” and “mice” cannot be preceded
with “a”.

* For PA1, we only focus on syntactic analysis and not contextual.
Therefore, “The cat chase a mice” is a valid sentence.. for now.

Mini-Triangle Language

e Expressions for mini-Triangle, for simple arithmetic operations
* Exp ::= PrimExp | Exp Oper PrimExp

* PrimExp :=1intlit | id | Oper PrimExp | (Exp)
* Oper =t | x| /<> =

Mini-Triangle Language

e Commands for Mini-Triangle

* Program ::=Cmd
* Cmd :=1d :=Exp | let Decl in Cmd
e Decl :=var id : type

Examples

* Is this a valid command for mini-Triangle?

let var x: Integer in x = 5 + (2%10)

* For each token, classify it according to the grammar.
e Use Oper, intlit, id, let, : (colon), type, in, := (assign), var, lparen, rparen

Examples

* Is this a valid command for mini-Triangle?

let var x: Integer in x = 5 + (2%10)

* For each token, classify it according to the grammar.

* Now group the tokens according to the grammar symbols.
* What tokens constitute a Decl, Cmd, Exp, PrimExp?

Examples

* Is this a valid command for mini-Triangle?

let var x: Integer in x = 5 + (2%10)

let var id colon integer in id assign intlit + Lparen intlit * intlit RParen

o
let var x: Integer in x = 5 + (2%10)
let var id colon integer in id assign intlit + Lparen intlit * intlit RParen
Type PrimExp PrimExp\ \
‘ Y / Exp Oper PrimExp

Decl \ Y J

(Exp)

Exp Oper PrimExp

L ')

‘ Exp’
Y
Cmd

1
let Decl in Cmd

Step 1: Where to begin in PA1?

THE UNIVERSITY

Simple Arithmetic Scanner/Parser

* Courtesy of Professor Prins, a simple Arithmetic Scanner and Parser is
on the course website.

* This corresponds to arithmetic parsing in miniTriangle

* You can use this as an example on how Scanners and Parsers are
structured.

Starter Code

e PA1 starter code is on the course website

* You do not have to use the starter code!

* The only thing that is important is that the Compiler class contains
your main function, and the Compiler class is contained in the
miniJava package.

Starter Code (2)

* Two easy steps!

e Step 1: Download the starter code from github

* Step 2: In the “pal/src/minilava” folder, copy these starter files to
your project

* How this works depends on your IDE.

Error Reporter

 Start with something easy, the error reporter is an object that records
errors as they arrive.

 Complete the methods:
e hasErrors— check to see if the errorQueue is non-empty

* outputbrrors— iterate through the errorQueue and output all strings

THE UNIVERSITY

Error Reporter — Extra Credit

* The error reporter contains one of few PA5 extra credits that can be
applied in PA1 and not impact the autograder.

* Consider augmenting the error reporter by requiring any call to
reportkError to also specify a line and column number.

* This will prove extremely helpful when debugging your code!

THE UNIVERSITY

Token class

* Another easy class to complete is the Token class.
* The token is classified by String and a TokenType.

* A token has this underlying string to represent the original text that
resulted in a specific TokenType.

* Implement the constructor, getTokenType and getTokenText
methods.

* And thus ends the Java warmup, now we get into the fun stuff!

THE UNIVERSITY

TokenType

e Consider the in-class exercise, what types of tokens do you want?
* List these token types in the TokenType enumeration.

* Note: You can optionally follow Java’s TokenKind implementation
where nothing is consolidated, but it will make your Parser slightly
lengthier.

=

Compiler.java- contains main method

 How the miniArith example works is that a FilelnputStreamis
created, and the PA1 starter files are structured similarly.

e Our file in question is in args [0]

* The autograder will always specify a file path, but it is good practice to error
check to make sure whether the argument has been specified or not.

* The Scanner object takes such an input stream to create tokens.

* The Parser object takes a Scanner object and the ErrorReporter. It will
report syntax errors.

THE UNIVERSITY

Scanner Design

Do | want the
current letter?

o

o7

Current Letter:
(a space)
Current Text: “”

O

Scanner

THE UNIVERSITY

Scanner Design

No, it is whitespace,
skiplt

o7

Current Letter:
(a space)
Current Text: “”

c)O

Scanner

)

Scanner Design

| like this letter, but
unsure of what the TokenType
is (probably identifier)
takelt

Current Letter: “c”
Current Text: “”

after takelt:

O Current Text: “c”

Scanner Design

If it is an identifier
then keep accepting until
whitespace or something
not allowed in identifiers

IIIII

Current Letter:
Current Text: “c”

after takelt:

O Current Text: “cl”
Scanner0

Scanner Design

Current Letter: “a@”
Current Text: “cl”

@ -
O After:

Scanner Current text: “cla”

Scanner Design

o_
S

Current Letter:
Current Text: “cla”

@ -
O After:

Scanner Current text: “clas”

Scanner Design

o_
S

Current Letter:
Current Text: “clas”

@ -
O After:

Scanner Current text: “class”

a7

Current Letter:

Turns out, it was not an _
(whitespace)

identifier, but it was a reserved
word. Create a Token with the
TokenType.ClassToken,
and return it.

Current Text: “class”

After:

own»

Current text:

Now let’s look at the Parser

=

Parser

* Consider a conveyer belt of Tokens provided by Scanner:

Current Token

.

Upcoming Tokens...

=

Parser

* Assume we are in the Grammar: Reference ::= id | this | Reference . id

Current Token

.

Upcoming Tokens...

=

Parser

* Assume we are in the Grammar: Reference ::= id | this | Reference . id

Current Token

.

Is this a valid sequence for Reference?

What does an error look like?

* The parser may “want” a certain TokenType, but the scanner provided
a different one!

* What does this look like, and how should the Compiler proceed?

Parser Errors

* Consider: Type ::=int | boolean | id | (int|1d)[]
e ParameterlList ::= Type id (,Type 1d)*

. Let’s process this ParameterList, Accept or Reject the
current token?

nn

¢= ¢= ¢=
owsmemensn s

Parser Errors

* Consider: Type ::= int | boolean | id | (int|id)[]
e ParameterList ::= Type 1d (,Type 1d)*

‘ Accept or Reject?
KB 3 S

¢= ¢= ¢=
owsmemensn

Parser Errors

* Consider: Type ::= int | boolean | id | (int|id)[]
e ParameterList ::= Type 1d (,Type 1d)*

‘ Accept or Reject?
KB 3 S

¢= ¢= ¢=
S

Parser Errors

e Consider: Type ::=int | boolean | id | (int]1d)[]
* ParameterList ::= Type id (,Type id)*

‘ Accept or Reject?
KB 3 S

¢= ¢= ¢=
owsmemensn e

=

Parser Errors

e Consider: Type ::=int | boolean | id | (int]1d)[]
e ParameterList ::= Type 1d (,Type 1d)*

‘ Accept or Reject?
o

¢= ¢= ¢=
owsmemensn e

=

Parser Errors

e Consider: Type ::=int | boolean | id | (int]1d)[]
e ParameterList ::= Type 1d (,Type 1d)*

l Accept or Reject?
KN

¢= ¢= ¢=
S

=

Parser Errors

e Consider: Type ::=int | boolean | id | (int]1d)[]
e ParameterList ::= Type 1d (,Type 1d)*

l Accept or Reject?
KN

¢= ¢= ¢=
owsmemensn e

Error! Expected Identifier, but got IntToken

* Should we go to the end of the
ParameterList?

Error! Expected Identifier, but got IntToken

* Should we go to the end of the
ParameterList?

e How would we know we ended
the ParameterlList?

THE UNIVERSITY

Error! Expected Identifier, but got IntToken

* Should we go to the end of the
ParameterList?

e How would we know we ended
the ParameterlList?

* It would involve scanning until
you find an RParen “)” because
ParameterList always has Parens
around it.

e But that sounds like it can get
complicated quickly.

=

Error! Expected Identifier, but got IntToken

* Should we go to the end of the * What if we only report the first
ParameterList? error?

* How would we know we ended Afterall, a syntax error means
the ParameterList? the program is non-functional,
so why check the remaining

* It would involve scanning until
program at all?

you find an RParen “)” because
ParameterList always has Parens
around it.

e But that sounds like it can get
complicated quickly.

Both answers are correct

* We will only grade based upon detecting the first error.

* The first solution sounds elegant right? But not really! Let’s take a
look at that Token stream again:

Both answers are correct

* We will only grade based upon detecting the first error.

* The first solution sounds elegant right? But not really! Let’s take a
look at that Token stream again:

 We know ParameterList is broken, but are there more errors we could
have reported?

Both answers are correct

* We will only grade based upon detecting the first error.

* The first solution sounds elegant right? But not really! Let’s take a
look at that Token stream again:

\ J
|

* Yes, Boolean arrays not allowed in miniJava

)

Error Reporting - Wrapup

* Yes, Boolean arrays not allowed in miniJava

* In a quest to report as many errors and be as descriptive as possible,
still encountering problems reporting “every” error.

* Continuing to process ParameterList and NOT jumping to the end will
likely result in the parser’s state machine not aligning well.

=

When a Syntax error happens...

e Use exception handlers to “unwind” and get out of however deep you
are in your parse methods.

* Finally, in PA1, report “Error” on ONE line (printIn) if any errors exist,
THEN proceed to output errors that are relevant towards helping
debug the input code.

* If there are no errors, output “Success” on ONE line (printin)

End

THE UNIVERSITY

II II 1J_fNUl{'I'H CAROLINA
af CHAPEL HILL
é

THE UNIVERSITY

II II 1J_fNUl{'I'H CAROLINA
af CHAPEL HILL
é

THE UNIVERSITY

II II 1J_fNUl{'I'H CAROLINA
af CHAPEL HILL
é

THE UNIVERSITY

II II 1J_fNUl{'I'H CAROLINA
af CHAPEL HILL
é

	Slide 1: COMP 520 - Compilers
	Slide 2: Programming Assignment 1
	Slide 3: Goals
	Slide 4: Java Runtime
	Slide 5: Java Runtime
	Slide 6: miniJava
	Slide 7: miniJava
	Slide 8: What are the goals of PA1?
	Slide 9: What are the goals of PA1?
	Slide 10: What are the goals of PA1?
	Slide 11: What are the goals of PA1?
	Slide 12: What are the goals of PA1?
	Slide 13: What are the goals of PA1?
	Slide 14: What are the goals of PA1?
	Slide 15: What are the goals of PA1?
	Slide 16: Whitespace!
	Slide 17: Scanning C++
	Slide 18: Let’s start with Lexical Analysis
	Slide 19: PA1- TokenType.java
	Slide 20: PA1- TokenType.java
	Slide 21: Taking a look at Java’s TokenKind
	Slide 22: Taking a look at Java’s TokenKind
	Slide 23: Analytically determine TokenType
	Slide 24: How would one even define “Syntax”?
	Slide 25: Syntax
	Slide 26: Syntax
	Slide 27: Languages Covered in 455
	Slide 28: What about Regular Languages?
	Slide 29: What about Regular Languages?
	Slide 30: What about Regular Languages?
	Slide 31: What about Regular Languages?
	Slide 32: RFC-822 Compliant Email Regex
	Slide 33: Regular Expressions
	Slide 34: Consider the Grammar for Identifiers
	Slide 35: Consider the Grammar for Identifiers
	Slide 36: Consider the Grammar for Identifiers
	Slide 37: Syntax
	Slide 38: Context-Free Grammers
	Slide 39: Context-Free Grammers
	Slide 40: CFG Components
	Slide 41: Language
	Slide 42: Recursion
	Slide 43: Recursion
	Slide 44: Recursion
	Slide 45: Recursion
	Slide 46: Limitations of CFGs
	Slide 47: Limitations of CFGs
	Slide 48: Mini-Triangle Language
	Slide 49: Mini-Triangle Language
	Slide 50: Examples
	Slide 51: Examples
	Slide 52: Examples
	Slide 53: Examples
	Slide 54: Step 1: Where to begin in PA1?
	Slide 55: Simple Arithmetic Scanner/Parser
	Slide 56: Starter Code
	Slide 57: Starter Code (2)
	Slide 58: Error Reporter
	Slide 59: Error Reporter – Extra Credit
	Slide 60: Token class
	Slide 61: TokenType
	Slide 62: Compiler.java- contains main method
	Slide 63: Scanner Design
	Slide 64: Scanner Design
	Slide 65: Scanner Design
	Slide 66: Scanner Design
	Slide 67: Scanner Design
	Slide 68: Scanner Design
	Slide 69: Scanner Design
	Slide 70
	Slide 71: Now let’s look at the Parser
	Slide 72: Parser
	Slide 73: Parser
	Slide 74: Parser
	Slide 75: What does an error look like?
	Slide 76: Parser Errors
	Slide 77: Parser Errors
	Slide 78: Parser Errors
	Slide 79: Parser Errors
	Slide 80: Parser Errors
	Slide 81: Parser Errors
	Slide 82: Parser Errors
	Slide 83: Error! Expected Identifier, but got IntToken
	Slide 84: Error! Expected Identifier, but got IntToken
	Slide 85: Error! Expected Identifier, but got IntToken
	Slide 86: Error! Expected Identifier, but got IntToken
	Slide 87: Both answers are correct
	Slide 88: Both answers are correct
	Slide 89: Both answers are correct
	Slide 90: Error Reporting - Wrapup
	Slide 91: When a Syntax error happens…
	Slide 92: End
	Slide 93
	Slide 94
	Slide 95
	Slide 96

